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Synchronization law for a van der Pol array

Slaven Pelesˇ* and Kurt Wiesenfeld†

Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
~Received 7 May 2003; published 27 August 2003!

We explore the transition to in-phase synchronization in globally coupled oscillator arrays, and compare
results for van der Pol arrays with Josephson junction arrays. Our approach yields in each case an analytically
tractable iterative map; the resulting stability formulas are simple because the expansion procedure identifies
natural parameter groups. A third example, an array of Duffing–van der Pol oscillators, is found to be of the
same fundamental type as the van der Pol arrays, but the Josephson arrays are fundamentally different owing
to the absence of self-resonant interactions.
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I. INTRODUCTION

The study of globally coupled oscillators arises in vario
areas of physics@1,2#, including optics@3#, superconducting
electronics@4#, and mechanics@5#. They are also used in
modeling biological systems such as the brain@6,7# and fire-
fly populations@8#. Globally coupled oscillators are of som
interest from a general theoretical perspective as well:
all-to-all coupling endows the dynamics with a symme
which makes its analysis unusually tractable.

In this paper, we explore an analytic approach that
recently led to dramatic progress in the study of Joseph
junction arrays@9,10#. Traditionally, Josephson arrays a
treated as belonging to two separate classes, dependin
whether or not the junctions have negligible capacitance.
new analysis derives accurate stability conditions for b
classes, expanding the success of other methods for zer
pacitance junctions@11,12#. In addition the method leads t
surprisingly simple expressions for the transition bounda
In effect, the structure of the calculation identifies natu
parameter groups, so that an apparently opaque formu
terms of the original system parameters is made transpa
The result is a unified stability formula for the two classes
Josephson arrays.

We examine whether this success can be extended to o
oscillator arrays. We apply the method to a globally coup
array of van der Pol oscillators. The result for the stabil
boundary of the in-phase state is indeed simple and in ag
ment with numerical simulations; nevertheless, its struct
is fundamentally different from the corresponding Joseph
one. We identify the source of the distinction as aself-
resonant interactionwhich is absent in the Josephson pro
lem. We also analyze an array of Duffing–van der Pol os
lators, which has self-resonant interactions, and get res
virtually identical to the van der Pol array.

II. van der POL OSCILLATORS

Balthazar van der Pol originally derived his equation
describe the dynamics of an electronic valve oscilla
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implemented with a triode vacuum tube@13#. Although this
particular technology has long since lost its relevance,
van der Pol equation has not. Besides its status as a fu
mental nonlinear oscillator, it is widely used to model t
behavior of a number of different systems in various area
science. Van der Pol himself suggested that this oscillator
be used to model the beating of the human heart@14# and
since then it has been a favorite choice in modeling biolo
cal phenomena@15#. In a very recent example@18#, a variant
of van der Pol equation~known as FitzHugh-Nagumo equa
tion @16,17#! has been used to describe a behavior
synaptically coupled neurons. Meanwhile, the most co
mon use of the van der Pol oscillator is in engineerin
where it is used extensively, for instance in the stu
of vibrations@1,19#.

In this section we study synchronization in an array
globally coupled van der Pol oscillators. We solve the eq
tions of motion perturbatively and use this scheme to der
an iterated map. A synchronized solution is a fixed point
that map, and by studying the stability of the fixed point w
derive an analytic formula for the stability of in-phase sta

We assume that the oscillators are identical and glob
coupled by a passive linear load typified by an induct
resistor-capacitor combination~Fig. 1!. The equations of mo-
tion for such a system take the form

FIG. 1. A global coupling scheme for a series array ofN van der
Pol oscillators~vp!. The coupling is weak and the load can b
described by linear equations of motion.
©2003 The American Physical Society20-1
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v̈k1e~12vk
2!v̇k1vk5q̇, ~1!

m1q̈1m2q̇1q5
h

N (
j 51

N

v j . ~2!

We assume thate and h are small parameters of the sam
order andh5ek, wherek;O(1). For aconcrete physica
picture, we can think ofvk as the voltage across thekth
oscillator andq as the charge on the coupling capacitor; t
parametersm1 andm2 are then proportional to the couplin
inductance and resistance, respectively. This is by no me
a general way to couple oscillators globally. Various co
pling schemes have been proposed in literature~see, e.g.,
Ref. @2#, and references therein!.

It is convenient to rewrite Eq.~1! by introducing polar
coordinates:

vk5r kcosuk ,

v̇k52r ksinuk ,

so instead ofN second-order equations~1! we get 2N first-
order equations

ṙ k5e
r k

2 S 12
r k

2

4 D 2e
r k

2
cos~2uk!1e

r k
3

8
cos~4uk!sin~uk!q̇,

~3!

u̇k511
e

2 S 12
r k

2

2 D sin~2uk!2e
r k

2

8
sin~4uk!

cos~uk!

r k
q̇.

~4!

We expand solutions of this system in terms ofe: r k5r k
(0)

1er k
(1)1e2r k

(2)1•••, uk5uk
(0)1euk

(1)1e2uk
(2)1•••, andq

5q(0)1eq(1)1e2q(2)1•••. Convergence of this expansio
at time scale of order 1 is guaranteed by the Poincare´ expan-
sion theorem@20#. We need accuracy to this order~and not
for larget) in order to construct an iterative map. The zero
order steady state solution is

r k
(0)5r 0k , uk

(0)5t1u0k , and q(0)50, ~5!

where r 0k and u0k are integration constants. For simplici
we drop the transient part of the solutionq(0) as we are
interested only in the stability of steady state, in-phase s
tion.

To first order ine we find from Eq.~2!

q(1)5
k

NZ (
j

r 0 jcos~ t1u0 j2d!, ~6!

and when we substitute this into the expressions forr k
(1) and

uk
(1) we obtain

ṙ k
(1)5

r 0k

2 S 12
r 0k

2

4 D 1
k

2NZ (
j

r 0 jcos~u0k2u0 j1d!1P2p ,

~7!
02622
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u̇k
(1)5

k

2NZ (
j

r 0 j

r 0k
sin~u0 j2u0k2d!1P2p , ~8!

where we use the symbolP2p to denote terms which are 2p
periodic; as we shall see, we do not need to be more spec
The constantsZ and d can be interpreted as the impedan
and phase shift of the~linear! load:

Z5A~12m1!21m2
2, d5arctan

m2

12m1
. ~9!

Equations~7! and~8! can be integrated directly, so the sol
tion through first order ine is

r k~ t !5r 0k1ep
r 0k

2 S 12
r 0k

2

4 D t1ep
k

2NZ (
j

r 0 jcos~u0k

2u0 j1d!t1eP2p1O~e2!, ~10!

uk~ t !5u0k1t1ep
k

2NZ (
j

r 0 j

r 0k
sin~u0 j2u0k2d!t1eP2p

1O~e2!. ~11!

Sincer 0k5r k(0)1O(e) andu0k5uk(0)1O(e) we may use
this solution to construct a 2N-dimensional map, which is
correct up to ordere2. An iteration of the map corresponds t
a translation in time fromt50 to somet5T. ChoosingT
52p1O(e), the map assumes the form

r k~T!5r k~0!1epr k~0!S 12
r k~0!2

4 D
1ep

k

NZ (
j

r j~0!cos@uk~0!2u j~0!1d#1O~e2!,

~12!

uk~T!5uk~0!12p1ep
k

NZ (
j

r j~0!

r k~0!
sin@u j~0!2uk~0!

2d#1O~e2!. ~13!

Note that to this orderr k(T) and uk(T) are functions of

$r j (0)% and$u j (0)%, but do not depend onq(0) or q̇(0). We
therefore drop equations for the mapq(0)→q(T) and q̇(0)
→q̇(T) from further consideration.

To make further analytic progress, we want to choose
period of strobing carefully. If T52p1epk/Z sind
1O(e2), then the in-phase synchronized state is a fixed po
of the map. Settingr k5r anduk5u for all k51, . . . ,N, we
find that

r 52A11k/Z cosd, ~14!

while u can assume any value on@0,2p#. ~The freedom inu
does not reflect the existence of a family of periodic so
tions; rather, it amounts to fixing the value of the phase
time t50.! The next step is to determine the stability of th
0-2
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SYNCHRONIZATION LAW FOR A van der POL ARRAY PHYSICAL REVIEW E68, 026220 ~2003!
fixed point. We calculate the Jacobi matrix of the map a
find its eigenvalues at this point. The eigenvalues are rea
found to be, up toO(e2),

l151, l25122peS 11
k

Z
cosd D , ~15!

and

l i ,i 11512peS 112
k

Z
cosd D

6peAS 11
k

Z
cosd D 2

2S k

Z
sind D 2

, ~16!

with i 53,5, . . . ,2N21. The unity eigenvaluel1 corre-
sponds to the requirement that the orbit is neutrally sta
with respect to perturbations along the trajectory in ph
space. The synchronized solution is stable when all the o
eigenvalues of the map have magnitude smaller than on

Note that the expressions for the eigenvalues are inde
dent of the parameterN. This is a direct consequence of th
way we have scaled the parameters in the governing Eqs~1!
and~2!. It follows that the change of stability of the in-phas
state will occur for the same parameter values regardles
the number of coupled oscillators.

To check our results we calculate numerically the Floq
multiplier of the synchronized solution of the original no
linear system Eqs.~1! and~2!. In Fig. 2 we plot the numeri-
cally determined Floquet multiplier of the in-phase state a
function of the load parameterm1, keeping the other param
eters fixed, and compare it with the largest eigenvalue de
mined from Eqs.~15! and ~16!. The difference between th
two is O(e2), so there is agreement within the expect
error.

We can write down a condition for the stability bounda
of the in-phase state as follows. We first note that eigenva
l2 corresponds to perturbations within the symmetric s
space, while the degenerate eigenvalues, Eq.~16!, corre-
spond to perturbations which introduce phase differenc
We get the condition for a symmetry breaking instability
setting the modulus of the latter equal to one, which yie
~after some algebra!

2
k

Z
cos2d12 cosd1

k

Z
50, ~17!

if the eigenvalue is real, and

112
k

Z
cos2d50, ~18!

if the eigenvalue is complex.

III. DISCUSSION

This same approach can be used to study different ph
cal problems. As a first example we consider a simple va
tion of the system we just analyzed, which can be imp
mented using a tunnel diode polarized so that its operatio
02622
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point lies on the negative resistance part of its volta
current curve@21#. This oscillator is quantitatively describe
by the van der Pol equation. If we couple a series array
these oscillators with a parallelRLC load ~Fig. 3!, the gov-
erning circuit equations become

cük2~a23buk
2!u̇k1

1

l
uk5Q̈L , ~19!

NLQ̈L1NRQ̇L1
N

C
QL5(

j
uj , ~20!

where N is the number of coupled oscillators,QL is the
charge on the load,NR, NL, andC/N are resistance, induc
tance, and capacitance of the load, respectively,l and c are
inductance and capacitance of individual van der Pol os
lators, anda andb are parameters characterizing the tunn
diodes. With the substitutionst→t5t/( lc), uk→vk

5A3b/auk , and

FIG. 2. An in-phase state becomes unstable as the modulu
the leading eigenvalue becomes larger than one. Dots repres
numerical estimate of the eigenvalue, while the solid line is
approximate analytical value@Eq. 16!#. Parameters are set t
e50.1, k51, and~a! m250.8, ~b! m251.5.
0-3
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QL→q5
1

c
A3b

a
q

these equations are brought into dimensionless form

v̈k1e~12vk
2!v̇k1vk5q̈, ~21!

m1q̈1m2q̇1q5
h

N (
j 51

N

v j , ~22!

where e5a l , h5C/c, m15LC/( lc), and m25RC/Alc.
These equations are almost the same as Eqs.~1! and ~2!,
except thatq̈ appears on the right-hand side of Eq.~21!

rather thanq̇. This minor structural difference leads to
significant change in the synchronization properties of
array. Assuming thate and h are small and repeating th
previous procedure we readily derive the eigenvalues of
in-phase solution:

l151, l25122peS 11
k

Z
sind D , ~23!

and

l i ,i 11512peS 112
k

Z
sind D

6peAS 11
k

Z
sind D 2

2S k

Z
cosd D 2

. ~24!

FIG. 3. Globally coupled van der Pol oscillators.
02622
e

e

Since by definition the phase angledP@0,p#, all eigenvalues
except forl1 are strictly smaller than one. Consequently, t
in-phase state is always stable, a prediction which is veri
by our extensive numerical simulations. This is reminisc
of the coupled pendulum problem originally studied
Huygens who found that the clocks always synchronized
antiphase@5,22#.

On the other hand, if in the previous example we repla
the van der Pol oscillators with Duffing–van der Pol oscil
tors, we do obtain a dynamical transition. The Duffing–v
der Pol equation

v̈k2e~12vk
2!v̇k1vk2eavk

350 ~25!

has an additional cubic term, which in turn leads to an ad
tional term in eigenvalues

l i ,i 11512peS 112
k

Z
sind D

6peAS 11
k

Z
sind D 2

2S k

Z
cosd D 2

1aA.

~26!

HereA53k/Z(2 cosd1sin 2d). The structure of the calcula
tion is identical to the one of the last section, and we omit
details here. As expected, the spectrum of eigenvalues~24! is
just a special case of the new spectrum~26!, whena50. We
tested these results numerically, and confirmed that eigen
ues~26! predict correctly the phase transition~Fig. 4!.

These results suggest that the van der Pol and Duffin
van der Pol arrays are members of a larger class obeying
same in-phase stability rules. On the other hand, as we
show, the Josephson junction arrays appear to belong
fundamentally different class.

IV. JOSEPHSON JUNCTION ARRAYS

Figure 5 is a circuit schematic for a current-biased se
array of Josephson junctions shunted by a parallel load.
equations of motion in dimensionless form are@9#

bf̈k1ḟk1b sinfk1Q̇L51, ~27!

m1Q̈L1m2Q̇L1QL5a(
j

ḟ j . ~28!

The parameterb is proportional to the junction capacitanc
It is precisely this problem where Chernikov and Schm

originally applied the perturbation expansion we will use.
was also for this problem where the extension of their cal
lation to produce an iterative map was first sketched, in R
@10#; it is in the latter that the simple rendering of the stab
ity formula was first noted. Unfortunately, neither referen
provides a sufficiently systematic derivation of the synch
nization condition for our purposes. We therefore presen
streamlined but complete derivation which~i! emphasizes
0-4
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SYNCHRONIZATION LAW FOR A van der POL ARRAY PHYSICAL REVIEW E68, 026220 ~2003!
how the method identifies key parameter groups and~ii ! al-
lows us to identify important differences with the van der P
calculation@23#.

As we will see, one obvious difference is that we need
take the expansion out to second order to get nontrivial
sults for the Josephson array. Even so, the in-phase sta
condition turns out to besimpler than for the van der Po
array.

Taking b as the small parameter, we introduce the exp
sions

fk5fk
(0)1bfk

(1)1b2fk
(2)1•••, ~29!

QL5QL
(0)1bQL

(1)1b2QL
(2)1•••. ~30!

To zeroth order, equations~27! and ~28! are

bf̈k
(0)1ḟk

(0)1Q̇L
(0)51, ~31!

m1Q̈L
(0)1m2Q̇L

(0)1QL
(0)5a(

j
ḟ j

(0) , ~32!

FIG. 4. Results for the Duffing–van der Pol array, showing a
lytic ~solid line! and numerically determined Floquet multiplie
~dots! for the in-phase state. Parameters are set toe50.1, k51,
and ~a! m250.8, ~b! m251.5. Note that small parameter approx
mation breaks down as parameterm2 becomes smaller.
02622
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which have solutionsQL
(0)5Q0 andfk

(0)5t1uk , whereQ0

anduk are constants. In first order, the differential equatio
are

bf̈k
(1)1ḟk

(1)1Q̇L
(1)52sin~ t1uk!, ~33!

m1Q̈L
(1)1m2Q̇L

(1)1QL
(1)5a(

j
ḟ j

(1) . ~34!

The steady state solution to these equations is periodic, s
can write it in the form

fk
(1)5Aksint1Bkcost, ~35!

QL
(1)5C sint1D cost. ~36!

By substituting these two solutions into Eqs.~33! and ~34!
we obtain a system of algebraic equations for the coefficie

bAk1Bk52D1cosuk , ~37!

2Ak1bBk5C1sinuk , ~38!

and

~12m1!C2m2D52a(
j

Bj , ~39!

m2C1~12m1!D5a(
j

Aj . ~40!

We note that the left-hand side of Eqs.~37! and ~38! can be
understood as a rotation of a vector (Ak ,Bk) through some
anglez5arccos(b/G), whereG5A11b2. Similarly, after
proper normalization byZ, Eqs.~39! and ~40! can be inter-

-

FIG. 5. Globally coupled Josephson junction oscillators.
0-5
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preted as a rotation of the vector (C,D) by an angled,
where Z and d are defined like in Eq.~9!. Solving these
equations for the constantsAk andBk yields, after some al-
gebra~cf. Ref. @9#, Appendix!,

Ak5G21cos~uk1z!2
a

GZP (
j

cos~u j1j2d1z!,

~41!

Bk5G21sin~uk1z!2
a

GZP (
j

sin~u j1j2d1z!,

~42!

where

P5AS b1
Na

Z
cosd D 2

1S 11
Na

Z
sind D 2

~43!

and

j5arctan
11Na/Z sind

b1Na/Z cosd
. ~44!

Therefore, the first-order solutions are

fk
(1)5G21sin~ t1uk1z!2

a

GZP (
j

sin~ t1u j1g1z!,

~45!

QL
(1)5

a

ZP (
j

cos~ t1u j1g!, ~46!

where we substitutedg5j2d. From Eq.~34! and its solu-
tion ~46! we infer thatg has a physical interpretation as th
characteristic voltage phase shift of the load. That is, if o
removes the nonlinearity of the Josephson junction~setting
b50) and probes the system with a unit amplitude sin
soidal current, the voltage oscillations across the load
lag byg radians~Fig. 6!. Also, by definitionz is the voltage
phase shift on a single junction, due to a sinusoidal driv
current, whenb50 ~Fig. 7!. Finally, the second-order equa
tions of motion are

bf̈k
(2)1ḟk

(2)1Q̇L
(2)52cos~ t1uk!fk

(1) , ~47!

m1Q̈L
(2)1m2Q̇L

(2)1QL
(2)5a(

j
ḟ j

(2) . ~48!

Substitutingfk
(1) into Eq. ~47! and solving yields

fk
(2)52

t

2G
sinz1t

a

2GZP (
j

sin~u j2uk1g1z!1P2p
(2) .

~49!

Putting this all together, we have the solution forfk ,
02622
e

-
ll

g

fk5t1bP2p
(1)2b2

t

2G
sinz2b2

ta

2GZP (
j

sin~u j2uk

1g1z!1b2P2p
(2)1O~b3!. ~50!

From this expression, we immediately deduce t
N-dimensional mapfk(0)→fk(T), good through orderb2:

fk~T!5fk~0!1T2b2
p

G
sinz1b2

pa

GZP (
j

sin@f j~0!

2fk~0!1g1z#1O~b3!,

where we have used the fact thatuk5fk(0)1O(b) and T
52p1O(b2). The in-phase state of the oscillator array co
responds to the symmetric fixed point of the map w
fk(0)5fk(T)5f* for all k. It is straightforward to find the
eigenvalues of the Jacobi matrix evaluated at this fixed po
with result

FIG. 6. Linear components of the full nonlinear problem in F
5. This is equivalent circuit for the Eqs.~33! and~34!. The angleg
is the phase shift by which the load voltageuL lags behind the
driving currenti.

FIG. 7. The phasez as defined in Eqs.~37! and ~38! is the
voltage phase shift on a single junction due to driving current, wh
b50.
0-6
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SYNCHRONIZATION LAW FOR A van der POL ARRAY PHYSICAL REVIEW E68, 026220 ~2003!
l151, l i .1512b2
pa

ZPG
cos~g1z!1O~b3!. ~51!

As a consequence, the stability condition for the in-ph
state takes a very simple form

cos~g1z!,0. ~52!

Numerical simulations@10# show that this condition accu
rately describes the onset of synchronization forb,1. By
substituting expressions for anglesg andz one recovers the
synchronization condition quoted by@9#. Moreover, by set-
ting parameterb50, we obtain the well known synchron
zation condition for noncapacitive junctions@12,24,25#.

It is worthwhile to consider this very simple result fro
another perspective. We emphasized that it is possible to
a direct physical interpretation of the phase angles. T
means that the two constituents of the stability condition
determined by linear properties of the circuit, while the~cru-
cial! role of the nonlinearity is to act as a catalyst. Furth
more, condition~52! does not depend on internal structure
individual oscillators, but only on phase shifts they indu
when driven by a sinusoidal signal. It is natural to specul
that this law should apply to a broader class of oscillator

V. CONCLUSION

The analytic scheme we have used is successful in
turing the stability properties of the in-phase state of vario
globally coupled arrays. It provides a clear and straightf
ward analysis, and leads to simple looking results. The p
turbation calculation can be relatively easily extended
higher orders in the small parameter. In certain cases
scheme may be more readily applied than standard meth
such as averaging.~Based on our personal experiences, t
is certainly true for the examples studied here.! Nevertheless,
there is no rigorous mathematical study of this approach,
it remains unclear what are its advantages~or shortcomings!
relative to other analytic methods.

The different examples share much in common. In car
ing out the calculation order by order, we are led to defi
gy

,
ce

tt.
z,

02622
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certain parameter groups which are in some sense nat
the resulting formulas for the eigenvalues are rather sim
functions of these parameter groups. In all cases the par
eter groups can be interpreted physically as impedance
phase shifts.

Despite the similarities, there appear significant diff
ences between the van der Pol and Josephson arrays. I
latter case we are led to an impressively simple stability c
dition involving only the phase shifts. The van der Pol pro
lem is somewhat more subtle; the stability condition depe
on both the phase shift and the impedance. There is no
to untangle these to yield a correspondingly simple stabi
condition. The two seem to fall into different classes.

In another sense, it is perhaps natural that the van der
and Josephson arrays behave differently. In his work on
cillator arrays@1#, Blekhman underscores the distinction b
tween vibrators and rotors. The class of vibrators is typifi
by the van der Pol oscillator, and the class of rotors is ty
fied by the ‘‘overturning’’ Josephson junction. And indee
the Duffing–van der Pol array~also vibrators! is described
by the same stability law as the van der Pol array.

In the context of our calculations, the reason for this
sential difference can be traced to the presence or absen
near-resonant interactions. In the van der Pol array,
zeroth-order problem is just the undriven, undamped h
monic oscillator. These necessarily generate oscillations
the passive load at the system’s resonant frequency. In
trast, the zeroth-order problem of the Josephson array la
any resonance. On the one hand this leads to nontrivial
teractions only at second order, but it also leads to a sep
tion of the roles of impedances and phase shifts. As one
from Eq. ~51!, while the phase shifts (g,d, andz) directly
determine the binary issue of whether or not the in-ph
state is stable, the impedances (Z,P, andG) only affect the
overall degree of stability.
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