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Synchronization law for a van der Pol array
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We explore the transition to in-phase synchronization in globally coupled oscillator arrays, and compare
results for van der Pol arrays with Josephson junction arrays. Our approach yields in each case an analytically
tractable iterative map; the resulting stability formulas are simple because the expansion procedure identifies
natural parameter groups. A third example, an array of Duffing—van der Pol oscillators, is found to be of the
same fundamental type as the van der Pol arrays, but the Josephson arrays are fundamentally different owing
to the absence of self-resonant interactions.
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I. INTRODUCTION implemented with a triode vacuum tup&3]. Although this
particular technology has long since lost its relevance, the
The study of globally coupled oscillators arises in variousvan der Pol equation has not. Besides its status as a funda-
areas of physicgl,2], including optics[3], superconducting mental nonlinear oscillator, it is widely used to model the
electronics[4], and mechanic$5]. They are also used in behavior of a number of different systems in various areas of
modeling biological systems such as the bif#¥] and fire-  science. Van der Pol himself suggested that this oscillator can
fly populations[8]. Globally coupled oscillators are of some pe ysed to model the beating of the human hfbf and
interest from a general theoretical perspective as well: thgjnce then it has been a favorite choice in modeling biologi-
aII—Fo-aII coupl_ing endoyvs the dynamics with a symmetry .5 phenomenfl5]. In a very recent example.8], a variant
which makes its analysis unusually tractable. of van der Pol equatiofknown as FitzHugh-Nagumo equa-

In this paper, we explore an analytic approach that ha’?ion [16,17)) has been used to describe a behavior of
recently led to dramatic progress in the study of .Josephsogynaptically coupled neurons. Meanwhile, the most com-

junction arrays[9,10]. Traditionally, Josephson arrays are mon use of the van der Pol oscillator is in engineering,

treated as belongi_ng to two separate c_Iasses, d(_epending Mhere it is used extensively, for instance in the study
whether or not the junctions have negligible capacitance. Th8f vibrations[1,19] '

new analysis derives accurate stability conditions for both In this section we study synchronization in an array of
clagses, e>.<pan(.j|ng the success ‘.Jf other methods for zero C@bbally coupled van der Pol oscillators. We solve the equa-
pac"‘i‘r!ce jun_ctlongll,lZ]. ”? addition the met_h_od leads to tions of motion perturbatively and use this scheme to derive
surprisingly simple expressions for th? tra_nsmo_n_ boundaryan iterated map. A synchronized solution is a fixed point of
In effec;c, the structuretr?ftthe caIcuIauE[)ln |dent|f|e? natulrall,[hat map, and by studying the stability of the fixed point we
parameter groups, so that an apparently opaque formuia e gn analytic formula for the stability of in-phase state.
terms of the O”G'F‘.a' system parameters is made transparert. We assume that the oscillators are identical and globally
The result is a unified stability formula for the two classes Ofcoupled by a passive linear load typified by an inductor-

Josephson arrays. . . R .
; . resistor-capacitor combinatidfig. 1). The equations of mo-
We examine whether this success can be extended to oth n for such a system take the form

oscillator arrays. We apply the method to a globally couple
array of van der Pol oscillators. The result for the stability
boundary of the in-phase state is indeed simple and in agree-

ment with numerical simulations; nevertheless, its structure

is fundamentally different from the corresponding Josephson

one. We identify the source of the distinction asself- vp

resonant interactiorwhich is absent in the Josephson prob- 1
lem. We also analyze an array of Duffing—van der Pol oscil-

lators, which has self-resonant interactions, and get results sz Load
virtually identical to the van der Pol array. :

II. van der POL OSCILLATORS

v
Balthazar van der Pol originally derived his equation to pN

describe the dynamics of an electronic valve oscillator

FIG. 1. A global coupling scheme for a series arrajNofan der
*Electronic address: peles@cns.physics.gatech.edu Pol oscillators(vp). The coupling is weak and the load can be
TElectronic address: kurt.wiesenfeld@physics.gatech.edu described by linear equations of motion.
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Uk+ 6(1 Uk)vk""Uk ql (1) 0(1)_2NZ 2 Sln(ﬁoj 90k_ 5)+P2ﬂ-, (8)

. . i
ﬂ1q+ﬂ2q+q=N Zl vj. (2)  where we use the symb#l, , to denote terms which arem2
= periodic; as we shall see, we do not need to be more specific.
The constantZ and & can be interpreted as the impedance

We assume tha¢ and » are small parameters of the same and phase shift of thdinean load:

order andn= ex, wherex~0O(1). For aconcrete physical
picture, we can think ob, as the voltage across theh P
oscillator andq as the charge on the coupling capacitor; the Z=+(1— )%+ ,u%, o= arctaq—z. 9
parametersy,; and u, are then proportional to the coupling T Ha
inductance and resistance, respectively. This is by no meal
a general way to couple oscillators globally. Various cou-
pling schemes have been proposed in literatisee, e.g.,

rEquaﬂons(?) and(8) can be integrated directly, so the solu-
tion through first order ire is

Ref.[2], and references thergin f r2
It is convenient to rewrite Eq(l) by introducing polar n(=rogter—|1-—|t+emr-— E r 0;COY Gk
coordinates: 2 4 2NZ
2
vk=l’kCOSt9k, 00]+5)t+ GPZW‘FO(E ), (10)
l')k=—rkSin0k, 0k(t) O t+t+ E’JTZNZ 2 Sln(aoj Ook— O)t+ €P27T
so instead oN second-order equatior{$) we get N first- +0O(e) (11)
order equations '
ol  {his solsion 10 consutuct arkdimenzional tap, which i
r=e=|1——|—€—cog26,)+ e— cog46,)sin( 0 : g '
k= €3 ( 4) 26+ e coL40)sin(6)q correct up to ordeg?. An iteration of the map corresponds to
(38)  a translation in time front=0 to somet=T. ChoosingT
=2m7+0(e€), the map assumes the form
. el i ri qog.
0k=1+§ 1- sm(2¢9k)—e S|n(4¢9k) g. r(0)?
= —+ —
@ (M) =r(0)+emr(0)| 1- —
We expand solutions of this system in termseofr ,=r (" e S 1 (0)cod Bu(0)— 6 (0)+ 51+ Of €2
+er®P+er@+... 6=00+eoM+e26(P+ .-, andq NZE (0)c0g 6(0) = 6,(0)+ o]+ O(€)
=q@+eq+ 2@+ - - .. Convergence of this expansion (12)
at time scale of order 1 is guaranteed by the Poineapan-
sion theoren{20]. We need accuracy to this ord@and not r,(0)

0
—5y Sin 6;(0) — 6,(0)

K
for larget) in order to construct an iterative map. The zeroth- 6, (T)=6,(0)+27+em—= N7 E r(0)

order steady state solution is

— 8]+ 0(€?). 13
rO=ro, 600=t+6y, andq®=0, (5) 1+0(e) (13

] ) ~_ Note that to this order(T) and 6,(T) are functions of
wherer g, and 6, are integration constants. For simplicity {r;(0)} and{,(0)}, but do not depend on(0) orq(0). We

we drop the transient part of the solutiaf® as we are
interested only in the stability of steady state, in-phase solutherefore drop equations for the mgf0)—q(T) andq(0)

tion. —q(T) from further consideration.
To first order ine we find from Eq.(2) To make further analytic progress, we want to choose the
period of strobing carefully. If T=27+emwk/Zsinés
+0(€), then the in-phase synchronized state is a fixed point

K
q(l):N_z > rojCogt+ b= ), (6)  of the map. Setting,=r and 6,= 6 for all k=1, ... N, we
J find that
and when we substitute this into the expressions fbrand r= 21T x/Z C0S3, (14)

6{") we obtain

: (2 while 6 can assume any value ¢8,27]. (The freedom g
S(1)_ ' Ok[ . TOk K _ does not reflect the existence of a family of periodic solu-
ry’'=— — |t == roiCcog 6, Ogi+ )+ Py, . i -

k™2 ( 4 ) 2NZ 2} TojC08 b 0o+ 8)+ Poy tions; rather, it amounts to fixing the value of the phase at
(7)  timet=0.) The next step is to determine the stability of the
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fixed point. We calculate the Jacobi matrix of the map and @ ' T T T
find its eigenvalues at this point. The eigenvalues are readily L .
found to be, up td(€?), ol )
K
N=1, N\p=1-27¢| 1+ Zcosa), (15
1 1
and 3
« 0.8:-
Nijr1=1—me 1+chosé) I
P 2 [ 2 0.6
iﬂ'e\/ 1+—cosé) —(—sin&) , (16 N T R T T
z E 0 0.5 1 15 2 2.5 3
m,

with i=3,5,...,2N—1. The unity eigenvalue\, corre-

sponds to the requirement that the orbit is neutrally stable |
with respect to perturbations along the trajectory in phase
space. The synchronized solution is stable when all the othe
eigenvalues of the map have magnitude smaller than one. 1.05

Note that the expressions for the eigenvalues are indeper
dent of the parameteM. This is a direct consequence of the
way we have scaled the parameters in the governing Bgs. 1 1
and(2). It follows that the change of stability of the in-phase ~3
state will occur for the same parameter values regardless o
the number of coupled oscillators.

To check our results we calculate numerically the Floquet
multiplier of the synchronized solution of the original non- 09k
linear system Eqql) and(2). In Fig. 2 we plot the numeri-
cally determined Floquet multiplier of the in-phase state as a
function of the load parameter,, keeping the other param-
eters fixed, and compare it with the largest eigenvalue deter-
mined from Eqs(15) and (16). The difference between the  FiG. 2. An in-phase state becomes unstable as the modulus of
two is O(€%), so there is agreement within the expectedihe leading eigenvalue becomes larger than one. Dots represent a
error. numerical estimate of the eigenvalue, while the solid line is its

We can write down a condition for the stability boundary approximate analytical valu¢Eq. 16]. Parameters are set to
of the in-phase state as follows. We first note that eigenvalue=0.1, k=1, and(a) u,=0.8, (b) u,=1.5.

N\, corresponds to perturbations within the symmetric sub-

space, while the degenerate eigenvalues, @6), corre-  point lies on the negative resistance part of its voltage-
spond to perturbations which introduce phase differencesuyrrent curve21]. This oscillator is quantitatively described
We get the condition for a symmetry breaking instability by by the van der Pol equation. If we couple a series array of
setting the modulus of the latter equal to one, which yieldghese oscillators with a parall®LC load (Fig. 3), the gov-

(after some algebya erning circuit equations become
K K
25 cos 5+ 2 cosé+ Z=0, (17 . 1 .
cl— (@—3Buf)u,+ Tuk:QLa (19

if the eigenvalue is real, and
K . . N
1+2-c0g5=0, (18) NLQ+NRQ+ 5 Q=20 uj, (20)
j

if the eigenvalue is complex. . . .
where N is the number of coupled oscillator, is the

charge on the load\R, NL, andC/N are resistance, induc-
tance, and capacitance of the load, respectivedyydc are

This same approach can be used to study different physinductance and capacitance of individual van der Pol oscil-
cal problems. As a first example we consider a simple varialators, anda and 8 are parameters characterizing the tunnel
tion of the system we just analyzed, which can be implediodes. With the substitutionst—r=t/(Ic), ux—uvy
mented using a tunnel diode polarized so that its operationa+ 38/ au,, and

Ill. DISCUSSION
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Since by definition the phase angle[0,7], all eigenvalues
except for\ ; are strictly smaller than one. Consequently, the
in-phase state is always stable, a prediction which is verified
by our extensive numerical simulations. This is reminiscent
— ’7&‘ NL of the coupled pendulum problem originally studied by
Huygens who found that the clocks always synchronized in
T antiphasd5,22].
On the other hand, if in the previous example we replace
— the van der Pol oscillators with Duffing—van der Pol oscilla-
| C/N tors, we do obtain a dynamical transition. The Duffing—van
der Pol equation

T % NR vi— e(1—vd)vg+vg— eavi=0 (25)

has an additional cubic term, which in turn leads to an addi-
tional term in eigenvalues

Nij+1=1—me

2

K -
1+2—sm5)
K . 2 K
1+—S|n5) —(—cosé + aA.

Z
— ’7&‘ im\/ Z Z

[ (26)

Here A= 3k/Z(2 cosé+sin 26). The structure of the calcula-
FIG. 3. Globally coupled van der Pol oscillators. tion is identical to the one of the last section, and we omit the
details here. As expected, the spectrum of eigenvdR®ss
1 [38 just a special case of the new spectr(#6), whena=0. We
Q.—q=-\/—q tested these results numerically, and confirmed that eigenval-
CVa ues(26) predict correctly the phase transitidiig. 4).

These results suggest that the van der Pol and Duffing—
van der Pol arrays are members of a larger class obeying the
. 2 * . same in-phase stability rules. On the other hand, as we now
vt e(1-vj)vktuve=a, (21) show, the Josephson junction arrays appear to belong to a
fundamentally different class.

these equations are brought into dimensionless form

N
. . i
+ +g=— v, (22
padTp2aTd N J'Zl ! IV. JOSEPHSON JUNCTION ARRAYS
where e=al, y=Clc, u;=LC/(lc), and ,u2=RC/\/E. Figure 5 is a circuit schematic for a current-biased series

These equations are almost the same as Egsand (2) array of Josephson junctions shunted by a parallel load. The
except thatdj appears on the right-hand side of E@1) equations of mation in dimensionless form &g

rather thang. This minor structural difference leads to a T . .

significant change in the synchronization properties of the Béit dctbsing+Q =1, (27)
array. Assuming that and » are small and repeating the

previous procedure we readily derive the eigenvalues of the

in-phase solution: “1QL+MQL+QL:&§]: 4 28)
AN=1, N,=1-2mel 1+ Esing)’ (23)  The parametep is proportional to the junction capacitance.
V4 It is precisely this problem where Chernikov and Schmidt

originally applied the perturbation expansion we will use. It

and was also for this problem where the extension of their calcu-
lation to produce an iterative map was first sketched, in Ref.

N jv1=1— el 1+2=sins [10], it is in the Ia_tter that the simple renderlng of the stabil
: 4 ity formula was first noted. Unfortunately, neither reference

5 5 provides a sufficiently systematic derivation of the synchro-
K K i i iti

1+ —siné) —(—cos&) (29 nlzatlon condition for our purposes. We Fherefore prgsent a
Z 4 streamlined but complete derivation whi¢h emphasizes

iﬂ'e\/
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FIG. 5. Globally coupled Josephson junction oscillators.

which have solution®(”=Q, and ¢{”=t+ 6,, whereQ,
and 6, are constants. In first order, the differential equations
are

m, B+ o +QM = —sin(t+ 6y), (33)

FIG. 4. Results for the Duffing—van der Pol array, showing ana- (1) (1) (1) _ (1)
lytic (solid line) and numerically determined Floguet multipliers #aQUT m2QU QU a; b (34

(dotg for the in-phase state. Parameters are set=t®.1, k=1,

and(a) u,=0.8, (b) u,=1.5. Note that small parameter approxi- The steady state solution to these equations is periodic, so we

mation breaks down as paramegey becomes smaller. can write it in the form
. . N D_ A«
how the method identifies key parameter groups @ndal- (V= Asint+B,cost, (39
lows us to identify important differences with the van der Pol W )
calculation[23]. Qp’=Csint+D cost. (36)

As we will see, one obvious difference is that we need tOBy substituting these two solutions into E483) and (34)

take the expansion out to second order to get nontrivial re, e obtain a system of algebraic equations for the coefficients
sults for the Josephson array. Even so, the in-phase stabiliw Y 9 q

gcr)rr;;i/ition turns out to besimpler than for the van der Pol BA+By=—D+cosb,, (37)
Taking b as the small parameter, we introduce the expan- — A+ BB =C+sinéy, (39
sions
and
b= ¢TI+ + -, (29
(1-p)C—pD=—a2 By, (39)
QL =QV+bQM+b2Q@+. ... (30 ]
To zeroth order, equatior®7) and (28) are w,CH+(1—p)D=a, A (40)
]
50) ¢+ 4(0) 4 5(0)—
B+ b+ Q=1 (32) We note that the left-hand side of Eq87) and(38) can be
understood as a rotation of a vectdk,(B,) through some
MQ(LO)JFM'Q(LO)JF Q(LO): a; ('1,1(0), (32) angle {=arccos3/G), whereG= 1+ 2. Similarly, after

proper normalization by, Eqgs.(39) and (40) can be inter-
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preted as a rotation of the vecto€,D) by an angleé,
where Z and & are defined like in Eq(9). Solving these
equations for the constangs, and B, yields, after some al-
gebra(cf. Ref.[9], Appendiy,

(%

= -1 —_——_— . —_
A=G coq O+ ) GZPZj cog 6+ &— 5+,
(41
Be=G Isin(+ {)— —o— S sin( 0+ &— 5+ ¢)
k k GZP 4 ) ’
(42
where
Na 2 Na 2
pP= B+ —-cosd| +|1+—-sinés (43
Z Z
and
1+Na/Zsiné 44
= n—m————.
¢=arcta B+NalZcosé (44
Therefore, the first-order solutions are
1) o lej e - .
HM=GTsin(t+ 6+ ) GZPEj sin(t+ 6, + y+¢),
(45
Q== S cogt+6,+7) (46)
L "ZP 4 IS

where we substituteg=¢— 5. From Eq.(34) and its solu-

tion (46) we infer thaty has a physical interpretation as the . o
characteristic voltage phase shift of the load. That is, if one ¢, (T)= ¢k(0)+T—bzasin§+ b? ——

removes the nonlinearity of the Josephson junctiegtting

b=0) and probes the system with a unit amplitude sinu-
soidal current, the voltage oscillations across the load will

lag by y radians(Fig. 6). Also, by definition{ is the voltage

PHYSICAL REVIEW E68, 026220 (2003

FIG. 6. Linear components of the full nonlinear problem in Fig.
5. This is equivalent circuit for the Eq&33) and(34). The angley
is the phase shift by which the load voltage lags behind the
driving currenti.

¢=t+bP(1)—b2Lsin§—b2t—a sin(6;— 6
k 272G 2GZP 4 Ik

+y+0)+b?P+0(b?). (50)

From this expression, we immediately deduce the

N-dimensional mapp,(0)— ¢(T), good through ordeb?:

azp > S (0)

— ¢ (0)+y+1+0(b%),

phase shift on a single junction, due to a sinusoidal drivingvhere we have used the fact th¢= ¢, (0)+O(b) and T

current, wherb=0 (Fig. 7). Finally, the second-order equa-
tions of motion are

BHI+H I+ Q= —cott+ o4, (4D
0P+ 0+ Q=S 47
Substituting{? into Eq. (47) and solving yields

—LsinHtLZ sin( 6, — O+ y+ ) + PP
2G 2GZP i Ty 27

o= >
(49

Putting this all together, we have the solution y,

=27+ 0(b?). The in-phase state of the oscillator array cor-
responds to the symmetric fixed point of the map with
& (0)= ¢ (T)= ¢, for all k. It is straightforward to find the
eigenvalues of the Jacobi matrix evaluated at this fixed point,
with result

FIG. 7. The phas€ as defined in Eqs(37) and (38) is the
voltage phase shift on a single junction due to driving current, when
b=0.
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, Ta . certain parameter groups which are in some sense natural:
A=1, Nj=1=1-b Zpgoodrt {)+0(b%). (51 the resulting formulas for the eigenvalues are rather simple
functions of these parameter groups. In all cases the param-

As a consequence, the stability condition for the in-phasé€ter groups can be interpreted physically as impedances or

state takes a very simple form phase shifts.
Despite the similarities, there appear significant differ-
cog y+{)<0. (52 ences between the van der Pol and Josephson arrays. In the

) . . . . latter case we are led to an impressively simple stability con-
Numerical simulation$10] show that this condition accu-  gition involving only the phase shifts. The van der Pol prob-
rately describes the onset of synchronizationlierl. By  |em is somewhat more subtle; the stability condition depends
substituting expressions for anglgsand¢ one recovers the  on poth the phase shift and the impedance. There is no way
synchronization condition quoted §9]. Moreover, by set- 5 yntangle these to yield a correspondingly simple stability
ting paramete3=0, we obtain the well known synchroni- ¢ondition. The two seem to fall into different classes.
zation condition for noncapacitive junctiofi2,24,23. In another sense, it is perhaps natural that the van der Pol
It is worthwhile to consider this very simple result from gpnqg Josephson arrays behave differently. In his work on os-
another perspective. We emphasized that it is possible to givgjiator arrays[1], Blekhman underscores the distinction be-
a direct physical interpretation of the phase angles. Thigyeen vibrators and rotors. The class of vibrators is typified
means that the two constituents of the stability condition argy the van der Pol oscillator, and the class of rotors is typi-
determined by linear properties of the circuit, while toeu-  figq by the “overturning” Josephson junction. And indeed
cial) role of the nonlinearity is to act as a catalyst. Further-tne Duffing—van der Pol arragalso vibrators is described
more, condition52) does not depend on internal structure of by the same stability law as the van der Pol array.
individual oscillators, but only on phase shifts they induce " |n the context of our calculations, the reason for this es-
when driven by a sinusoidal signal. It is natural to speculateential difference can be traced to the presence or absence of
that this law should apply to a broader class of oscillators. pear-resonant interactions. In the van der Pol array, the
zeroth-order problem is just the undriven, undamped har-
V. CONCLUSION monic oscillator. These necessarily generate oscillations in
The analytic scheme we have used is successful in ca the passive load at the system’s resonant frequency. In con-
. i ) . . Qrast, the zeroth-order problem of the Josephson array lacks
turing the stability properties of the in-phase state of various, o "o once. On the one hand this leads to nontrivial in-
globally coupled arrays. It provides a clear and Straightfor'ter)r:lctions only .at second order, but it also leads to a separa-

ward analysis, and leads to simple looking results. The PElGon of the roles of impedances and phase shifts. As one sees

turbation calculation can be relatively easily extended tof om Eq. (51), while the phase shiftsy(5, and¢) directly

higher orders in the small parameter. In certain cases thi etermine the binary issue of whether or not the in-phase
scheme may be more readily applied than standard metho State is stable, the impedances, andG) only affect the

such as averagingBased on our personal experiences, this »
is certainly true for the examples studied hgMevertheless, overall degree of stabilty.
there is no rigorous mathematical study of this approach, and
it remains unclear what are its advantag@sshortcomings
relative to other analytic methods.

The different examples share much in common. In carry- This work was sponsored in part by the Office of Naval
ing out the calculation order by order, we are led to defineResearch under Contract No. N00014-99-1-0592.
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